Loading...

AI人工智慧(Artificial Intelligence)是什麼?

AI人工智慧指的是能模仿人類思考與行為的機器系統,透過程式和資料數據讓機器學習並根據data收集和演算不斷自我調整進化。

  • AI有分為強人工智慧(Strong AI)或稱通用人工智慧(Artificial General Intelligence, ASI),指的是已經具備和人類同等甚至超越人類智慧的AI,具有自我意識、解決問題、學習與規劃未來的能力。目前只是理論存在在科幻小說與電影中。
  • 弱人工智慧(Weak AI)或稱狹義人工智慧(Artificial Narrow Intelligence, ANI),指的是針對特定任務執行的AI,是真正在現代科技社會廣泛運用的AI形式,包含自動駕駛、語言辨識等應用。

我們目前真正在討論的 AI 大多是非通用型的人工智慧,是人類設計出來為了執行特定任務的弱AI,但弱AI其實並不弱,他有許多的應用深深影響我們的生活。

AI應用在哪些方面?

AI擅長處理的問題,通常是資料量大樣本多,且與情境相關性低的任務,那到底現在生活中,實際應用AI在哪些方面呢?主要有六個面向

  • 影像處理 Image Processing:AI被廣泛用來辨識圖像,並做出標籤,當你在使用以圖找圖時,電腦就能辨識出相似的圖片。或是便是你的特徵,讓你用臉部辨識來登入服務。
  • 推薦引擎:透過過去的消費者行為留下的資訊,經過人工智慧演算法推薦給你你可能會喜歡的類似商品或歌曲,像是Spotify推薦品味類似的歌手,或是電商網站推薦給你你可能想要買的產品。
  • 語音辨識:語音辨識像是Youtube影片中能自動生成的字幕,或透過自然語言處理 Natural Language Processing,你和蘋果的Siri或 Google 語音發問時,他能了解你說的話,並進一步給予相應的回應。
  • AI客服機器人/助手:使用自然語言處理 Natural Language Processing 技術,能夠讓線上客服Chatbot辨識並回答客戶的疑問並給予更精確的回答。
  • 自動防詐騙:亞馬遜、淘寶、Google、Facebook上都有大量的詐騙賣家與假評價、賈廣告,AI人工智慧可以幫助辨別類似詐騙模式並下架。
  • 電腦視覺(Computer vision):電腦擷取影像處理和分析數據,在自動駕駛領域,電腦能從這些影像能辨識道路上的不同物體與號誌,來幫助車子判斷決策自動駕駛下一步的行動。

AI的產業趨勢

不同的調查機構對企業導入AI的理由其實大同小異,包含提升客戶的體驗,增加員工的生產力與商業流程的優化,有一些主要的AI導入不同產業的趨勢,會在不遠的未來越來越常見,這些產業趨勢都是現在進行式。

  • 更多的RPA(Robotic Process Automation)機器人流程自動化:企業組織將利用更多AI來最佳化工作流程,包含導入可自動化的工作以及運用AI尋找並拆解可自動化的新流程,幫助企業更有效率做事以及開發新產品。
  • 邊緣運算(Edge computing):越來越多AI運算需要實時快速處理,也因此邊緣運算是讓運算直接就近在鄰近的邊緣伺服器節點進行運算,成本較低且更快更節省時間。從自動駕駛到醫院的醫療影像機器都仰賴邊緣運算的技術。
  • 自然語言處理(NLP):目前最廣泛的AI應用之一,從Siri到Google Home等人類與機器的語言交互越來越頻繁,機器人能夠辨識語音和語意的能力也持續增強,會在情感分析,機器翻譯和聊天機器人使用上持續增加。
  • 更多的混合勞動力與AI人才需求:從IT業到非AI業,都有越來越大量的AI相關人才需求,這表示需要更大量的人類與機器協作,能幫助企業更快速且規模化地導入,並增加整體企業執行業務與創新的效率。
Source: IBM


AI的產業人才需求

未來所有的產業都會是和AI相關的產業,麥肯錫在未來人才技能報告也有說到,數位技能是能幫助人才應對未來工作挑戰的關鍵。能夠幫助他們在AI人工智慧時代,無論從事什麼職業都能增加自己不被AI取代的價值,並能適應新的工作方式與新的職業。

Source: Mckinsey

世界經濟論壇也預估到2025年需求成長最多的人才,前三名分別是資料分析師/資料科學家、AI機器學習專家以及大數據專家。有8500萬個工作會因為人機分工協作而取代,而出現9700萬個更適應與AI協作的新職位。

無論你在哪個產業,都應該要去了解AI如何改變企業的運行邏輯,並讓自己擁有不容易被淘汰和取代的技能,學會如何和AI協作,甚至是自己能創造改善優化自己工作與企業流程的AI,學會擷取和分析資料數據,真正擁有運用數位技能解決問題的能力。

資料科學或網頁開發,程式開發該選哪個領域?